STMA Mid American Regional Conference 2012

Efficiency versus Uniformity

- Efficiency: is the ratio between how much water the plant beneficially uses compared to how much water the irrigation system applies.
- Uniformity: relates to how evenly the water is applied over an area. Equipment selection affects uniformity.

Efficiency versus Uniformity

Efficiency & Uniformity

Why is Maximizing Water Use & Maintaining Optimum Uniformity Important?

Environmental

- Water Conservation
- Energy Conservation
- Eliminate Nutrient Leaching \$\$\$
- Reduce Weed and Disease Control Needs

Why is Maximizing Water Use &

Maintaining Optimum Uniformity

Important?

Turf Management

- Safety
- Manage Salinity / Poor Water Quality
- Improve Playing Conditions
- Improve Aesthetics
- Healthier Turf

The Facts....

- Outdoor water use is under increased, if not constant observation
- Water is our #1 most valuable resource, worldwide!
- Large percentage of water is wasted due to inefficient systems

What Is The Answer?

More efficient irrigation systems?

- The irrigation system is only as good as the designer/ installer/ operator/ manager
- The irrigation system is only as good as the <u>written</u> specifications the designer & contractor must follow

Irrigation System Performance Audit

Class Objectives:

- be able to perform field audits on irrigation systems
- be able to identify problems that cause poor uniformity

Key Irrigation Auditor Actions

- Identify equipment problems
- Determine actual system performance based on uniformity tests
- o Adjust run times for DU or SC

Irrigation Audits

- Site inspection system tune up
- System audit
- Calculate distribution uniformity; precipitation rate; runtime

Water savings achieved by:

- Checking and fixing equipment
- Using state-of-the-art water saving equipment and programs
- o Following the weather throughout the season
- Maintaining the system at peak efficiency

Concepts and and Problems

Problem areas....non-uniformity

Water Application and Uniformity

POOR UNIFORMITY

GOOD UNIFORMITY

Infiltration Rate in./hr

- o Rate at which water moves into soil
- Sandy soils accept water rapidly
- Heavy soils accept water slowly
- Decreases during irrigation

Precipitation Rate (in./hr)

- O How fast does system apply water?
- Varies from station to station
- Even varies within a station
- Many systems' precipitation rates exceed the infiltration rate

Theoretical Precipitation Rate

(in./hr)

$$PR = \frac{96.3 \ Q}{A}$$

Q = flow rate into area (gpm)

A = area (sq. feet)

Matched Precipitation Rates

- o all the heads have similar precipitation rates
- o matched precipitation rates can help to avoid wet and dry spots AND help save water!
- o you must verify during the site inspection
- o can drastically alter the uniformity

Heads WITHOUT Matched Precipitation

Matched Precipitation Rates

To the field!

Site Inspection

Step one: get the system working right

Site Inspection Priorities (what to repair)

- O What is the "goal" of the audit?
- o Minor, not major repairs
- Low heads
- o Plugged heads
- o Tilted heads
- No matched precipitation rate
- Mixed unmatched heads

SYSTEM TUNE UP

- Spray Deflection
- Plugged Equipment
- Broken Heads
- Tilted and Sunken Sprinklers
- Arc Misalignment
- Non-Rotating Heads

Information to Collect in the Site Inspection

- Site conditions
- Point of connection data
- 。Controller data
- Brand of products used
- Pressure at nozzles

REQUIRED EQUIPMENT for an Audit...

- Flags
- Tape Measure 100 feet minimum
- Pressure Gauge 0 to 160 psi minimum
- Wind gauge
- Measuring Device (Cup)
- Watch or time measuring device
- 2 People
- Clip board and pencil

REQUIRED EQUIPMENT

AUDITING PROCEDURE

- Flag/ mark Sprinklers
- Set out cups
- Pressure Measure Static
- Operate sprinklers
- Pressure Measure Dynamic
- Measure wind speed

Determining Pressures....

Liquid filled Pitot Tube

Dynamic pressure w/ pitot tube

Dynamic pressure w/ hose and pitot tube

Dynamic pressure w/ gauge for spray bodies

Static pressure w/ gauge

Measuring Wind Speed

- Handheld anemometer
- Upwind-Downwind Ratio

Catch Devices

- Calculate falling water from sprinklers
- Used to determine precipitation rate & uniformity
- All catch devices must be identical
- May measure in millimeters or inches
- Volume measurement with a wide throat area allows for shorter test times

Catch Device Types

Placement of Catch Cans

- Use a grid system
 - Rotors typically between 10' to 20' centers
 - Sprays use smaller grid between 4-8' centers
- Size of test area determines grid spacing
- An minimum number of <u>24 cans</u> per test area is preferred
- More data is better than less data
- Number of catch cans should be a <u>multiple of 4</u> if possible

Placement of Catch Cans

- Spacing: how many catch cans and where?
 - < 59' Sprinkler Spacing = 3' X 3' apart
 - > 59' Sprinkler Spacing = 10' X 10' apart
 - Place in a grid; do not place in front of sprinkler!

Laying out catch cans

Placement of Catch Cans....

"At a sprinkler; halfway to the next"

Single Station Test Area

o Rectangular sprinkler spacing

Multi-Station Test Area

o Rectangular sprinkler spacing

Collect other data during station runs.

- Spacing of sprinklers:
 - head to head
 - line-to-line
- o Test soil type and root zone depth

Spacing Measurement

Station 1 Station 2 Station 3

SAMPLE

Spacing
Measurement:
Triangular
Spacing

Running the Test

Run test during typical wind conditions!

Testing Run Times (min.)

- How long the station runs for test
- Affects quantity of water in catchments
- Spray heads = 3-6 minutes
- o Rotary heads = 10-20 minutes

Recording Data

Read and Record the Volume

- Estimate to the nearest milliliter
- Better if the same person reads the catch volumes
- Record the volumes in relation to the sprinklers on the drawing

Performance Calculations

- o The results of the catch test
 - Net Precipitation Rate
 - Distribution Uniformity
- A snap shot of how the equipment is performing at a specific moment in time
 - Only maintenance and management can sustain a well performing irrigation system
 - Only maintenance and management can improve a poorly performing system

Distribution Uniformity

- The measure of how evenly the water is being distributed by sprinklers in overlapping coverage
- Expressed as a decimal
 - 1.00 is perfect (unattainable)
- Uniformity is affected by
 - Pressure
 - Spacing
 - Flow

- Maintenance
- Wind
- Interference

Distribution Uniformity

POOR UNIFORMITY

GOOD UNIFORMITY

Elements of Uniformity

Application Efficiency

- The ratio of total water applied to the total water infiltrated and stored in the soil
- Often mistakenly used interchangeably with uniformity
- Efficiency is affected by
 - Uniformity
 - Scheduling
 - Maintenance

Application Efficiency

$\mathbf{D}\mathbf{U}_{ ext{LQ}}$

- One way of measuring system uniformity
- Average of the lowest 25% of catchments divided by the average total catchments

Distribution Uniformity (D.U.)(%)

$$DU_{LQ} = \frac{Avg. \ depth \ of \ lower \ quarter}{Avg. \ depth} 100\%$$

Distribution Uniformity (DU_{LQ})

Field Test

CALCULATE $DU_{LQ} \frac{0.63}{0.75}$

x 100 = .84 or 84%

Distribution Uniformity

Expected DU_{LQ}

Sprinkler Type	Achievable (DU _{LQ})	$egin{arget} \mathbf{Target} \\ \mathbf{(DU_{LQ})} \end{bmatrix}$	Historical (DU _{LQ})
Rotary Sprinklers	0.75 - 0.85	0.65 - 0.75	0.55 - 0.65
Spray Sprinklers	0.65 - 0.75	0.55 - 0.65	0.45 - 0.55

If lower than historical, consider system improvements

Scheduling:

- EXAMPLE:
- Kc = cool season turf = .80
- ETo = .25"/ day
- DU = 45%
- Soil = sandy loam
- PR = .50"/ hr.
- $T = \underline{60 \times ETo \times Kc}$ PR x EA

$$T = 60 \times .25 \times .80$$

50 x .45

• $T = \frac{12.0}{.23}$

T = 53 minutes run time

Scheduling:

- EXAMPLE:
- Kc = cool season turf = .80
- ETo = .25"/ day
- DU = 70%
- Soil = sandy loam
- PR = .50"/ hr.

•
$$T = \underline{60 \times ETo \times Kc}$$
PR x EA

$$T = \underline{60 \times .25 \times .80}$$
.50 x .70

•
$$T = 12.0$$

T = 34 minutes run time

How Uniformity affects runtimes:

DU %	Plant Water Req.	\	DU	Runtime
30%	1"	\	.30	3.33
50%	1"	\	.50	2.00
70%	1"	\	.70	1.42

Think in terms of \$\$\$'s for cost of water & pumps.....

Poor Uniformity Leads to Longer Run Times

Key Irrigation Auditor Actions

- Identify equipment problems
- Determine actual system performance based on uniformity tests
- Adjust run times according to DU and Precipitation rates

Site Report

- Letter format for management review
- Formal document/ report
- Document hardware changes to consider
- Statistical data to justify renovations!!

Recap Key Actions

- Identify equipment problems
- Repair problems
- Determine actual system performance based on uniformity tests
- Make recommendations for improvement

Considerations...

Considerations...

Considerations...

- Conservation of Water
- Healthy Plant Material
- Aesthetically Pleasing Landscapes
- Prevent Liabilities
- Overall Lower Costs

STMA = SUCCESS!

SportSurf Managers association

Experts on the Field, Partners in the Game.

Your #1 Resource

www.stma.org

Lynda Wightman; Hunter Industries 406.544.1911 (m)

lynda.wightman@hunterindustries.com